Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
1.
Cancer Med ; 13(7): e7148, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558536

RESUMO

BACKGROUND: Non-canonical WNT family (WNT5A pathway) signaling via WNT5A through ROR1 and its partner, ROR2, or Frizzled2 (FZD2) is linked to processes driving tumorigenesis and therapy resistance. We utilized a large dataset of urothelial carcinoma (UC) tumors to characterize non-canonical WNT signaling through WNT5A, ROR1, ROR2, or FZD2 expression. METHODS: NextGen Sequencing of DNA (592 genes or WES)/RNA (WTS) was performed for 4125 UC tumors submitted to Caris Life Sciences. High and low expression of WNT5A, ROR1, ROR2, and FZD2 was defined as ≥ top and

Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
2.
J Appl Oral Sci ; 32: e20230353, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359266

RESUMO

BACKGROUND: Associations between the WNT5A rs566926 variant and non-syndromic orofacial cleft (NSOC) have been reported in different populations. OBJECTIVE: This study aimed to investigate the role of the rs566926 single nucleotide polymorphism (SNP) in WNT5A and its interactions with SNPs in BMP4, FGFR1, GREM1, MMP2, and WNT3 in the occurrence of NSOC in a Brazilian population. METHODOLOGY: A case-control genetic association study was carried out involving participants from four regions of Brazil, totaling 801 patients with non-syndromic cleft lip with or without cleft palate (NSCL±P), 273 patients with cleft palate only (NSCPO), and 881 health volunteers without any congenital condition (control). Applying TaqMan allelic discrimination assays, we evaluated WNT5A rs566926 in an ancestry-structured multiple logistic regression analysis, considering sex and genomic ancestry as covariates. Interactions between rs566926 and variants in genes involved in the WNT5A signaling pathway (BMP4, FGFR1, GREM1, MMP2, and WNT3) were also explored. RESULTS: WNT5A rs566926 was significantly associated with an increased risk of NSCL±P, particularly due to a strong association with non-syndromic cleft lip only (NSCLO), in which the C allele increased the risk by 32% (OR: 1.32, 95% CI: 1.04-1.67, p=0.01). According to the proportions of European and African genomic ancestry, the association of rs566926 reached significant levels only in patients with European ancestry. Multiple interactions were detected between WNT5A rs566926 and BMP4 rs2071047, GREM1 rs16969681 and rs16969862, and FGFR1 rs7829058. CONCLUSION: The WNT5A rs566926 polymorphism was associated with NSCL±P, particularly in individuals with NSCLO and high European ancestry. Epistatic interactions involving WNT5A rs566926 and variants in BMP4, GREM1, and FGFR1 may contribute to the risk of NSCL±P in the Brazilian population.


Assuntos
Fenda Labial , Fissura Palatina , Humanos , Fenda Labial/genética , Fissura Palatina/genética , Genótipo , Brasil , Metaloproteinase 2 da Matriz , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , Proteína Wnt-5a/genética
3.
Cell Mol Life Sci ; 81(1): 93, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367191

RESUMO

Stem Leydig cells (SLCs) are essential for maintaining normal spermatogenesis as the significant component of testis microenvironment and gonadal aging. Although progress has been achieved in the regulation of male germ cells in mammals and humans, it remains unknown about the genes and signaling pathways of human SLCs. Here we have demonstrated, for the first time, that WNT5A (Wnt family member 5a) mediates the proliferation, apoptosis, and stemness of human SLCs, namely NGFR+ Leydig cells. We revealed that NGFR+ Leydig cells expressed NGFR, PDGFRA, NES, NR2F2, and THY1, hallmarks for SLCs. RNA-sequencing showed that WNT5A was expressed at a higher level in human SLCs than non-SLCs, while immunohistochemistry and Western blots further illustrated that WNT5A was predominantly expressed in human SLCs. Notably, CCK-8, EdU and Western blots displayed that WNT5A enhanced the proliferation and DNA synthesis and retained stemness of human SLCs, whereas flow cytometry and TUNEL analyses demonstrated that WNT5A inhibited the apoptosis of these cells. WNT5A knockdown caused an increase in LC lineage differentiation of human SLCs and reversed the effect of WNT5A overexpression on fate decisions of human SLCs. In addition, WNT5A silencing  resulted in the decreases in nuclear translocation of ß-catenin and expression levels of c-Myc, CD44, and Cyclin D1. Collectively, these results implicate that WNT5A regulates the proliferation, apoptosis and stemness of human SLCs through the activation of the ß-catenin signaling pathway. This study thus provides a novel molecular mechanism underlying the fate determinations of human SLCs, and it offers a new insight into the niche regulation of human testis.


Assuntos
Células Intersticiais do Testículo , beta Catenina , Animais , Humanos , Masculino , Células Intersticiais do Testículo/metabolismo , beta Catenina/metabolismo , Testículo/metabolismo , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo , Transdução de Sinais , Apoptose , Proliferação de Células , Via de Sinalização Wnt/genética , Mamíferos/metabolismo
4.
Nat Commun ; 15(1): 36, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167296

RESUMO

While canonical Wnt signaling is well recognized for its crucial regulatory functions in cell fate decisions, the role of non-canonical Wnt signaling in adult stem cells remains elusive and contradictory. Here, we identified Mcam, a potential member of the non-canonical Wnt signaling, as an important negative regulator of mammary gland epithelial cells (MECs) by genome-scale CRISPR-Cas9 knockout (GeCKO) library screening. Loss of Mcam increases the clonogenicity and regenerative capacity of MECs, and promotes the proliferation, differentiation, and ductal morphogenesis of mammary epithelial in knockout mice. Mechanically, Mcam knockout recruits and polarizes macrophages through the Il4-Stat6 axis, thereby promoting secretion of the non-canonical Wnt ligand Wnt5a and its binding to the non-canonical Wnt signaling receptor Ryk to induce the above phenotypes. These findings reveal Mcam roles in mammary gland development by orchestrating communications between MECs and macrophages via a Wnt5a/Ryk axis, providing evidences for non-canonical Wnt signaling in mammary development.


Assuntos
Proteínas Wnt , Via de Sinalização Wnt , Camundongos , Animais , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo , Diferenciação Celular , Morfogênese , Camundongos Knockout , Macrófagos/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo
5.
BMC Infect Dis ; 23(1): 860, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062395

RESUMO

BACKGROUND: Aberrant Wnt5a expression contributes to immunity, inflammation and tissue damage. However, it remains unknown whether Wnt5a is associated with liver injury in chronic hepatitis B virus (HBV) infection. We aimed to explore the potential role of Wnt5a expression in liver injury caused by chronic HBV infection. METHODS: Wnt5a mRNA levels in peripheral blood mononuclear cells (PBMCs) were analyzed in 31 acute-on-chronic hepatitis B liver failure (ACHBLF) patients, 82 chronic hepatitis B (CHB) patients, and 20 healthy controls using quantitative real-time polymerase chain reaction. Intrahepatic Wnt5a protein expression from 32 chronic HBV infection patients and 6 normal controls was evaluated by immunohistochemical staining. RESULTS: Wnt5a mRNA expression was increased in CHB patients and ACHBLF patients compared to healthy controls and correlated positively with liver injury markers. Additionally, there was a significant correlation between Wnt5a mRNA expression and HBV DNA load in all patients and CHB patients but not in ACHBLF patients. Furthermore, intrahepatic Wnt5a protein expression was elevated in chronic HBV infection patients compared to that in normal controls. Moreover, chronic HBV infection patients with higher hepatic inflammatory grades had increased intrahepatic Wnt5a protein expression compared with lower hepatic inflammatory grades. In addition, the cut-off value of 12.59 for Wnt5a mRNA level was a strong indicator in predicting ACHBLF in CHB patients. CONCLUSIONS: We found that Wnt5a expression was associated with liver injury in chronic HBV infection patients. Wnt5a might be involved in exacerbation of chronic HBV infection.


Assuntos
Insuficiência Hepática Crônica Agudizada , Hepatite B Crônica , Hepatite B , Humanos , Insuficiência Hepática Crônica Agudizada/complicações , Hepatite B/complicações , Vírus da Hepatite B/genética , Hepatite B Crônica/complicações , Hepatite B Crônica/genética , Leucócitos Mononucleares/metabolismo , RNA Mensageiro/genética , Proteína Wnt-5a/genética
6.
Cells ; 12(22)2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37998393

RESUMO

WNT/ß-catenin signaling is essential for colon cancer development and progression. WNT5A (ligand of non-canonical WNT signaling) and its mimicking peptide Foxy5 impair ß-catenin signaling in colon cancer cells via unknown mechanisms. Therefore, we investigated whether and how WNT5A signaling affects two promoters of ß-catenin signaling: the LGR5 receptor and its ligand RSPO3, as well as ß-catenin activity and its target gene VEGFA. Protein and gene expression in colon cancer cohorts were analyzed by immunohistochemistry and qRT-PCR, respectively. Three colon cancer cell lines were used for in vitro and one cell line for in vivo experiments and results were analyzed by Western blotting, RT-PCR, clonogenic and sphere formation assays, immunofluorescence, and immunohistochemistry. Expression of WNT5A (a tumor suppressor) negatively correlated with that of LGR5/RSPO3 (tumor promoters) in colon cancer cohorts. Experimentally, WNT5A signaling suppressed ß-catenin activity, LGR5, RSPO3, and VEGFA expression, and colony and spheroid formations. Since ß-catenin signaling promotes colon cancer stemness, we explored how WNT5A expression is related to that of the cancer stem cell marker DCLK1. DCLK1 expression was negatively correlated with WNT5A expression in colon cancer cohorts and was experimentally reduced by WNT5A signaling. Thus, WNT5A and Foxy5 decrease LGR5/RSPO3 expression and ß-catenin activity. This inhibits stemness and VEGFA expression, suggesting novel treatment strategies for the drug candidate Foxy5 in the handling of colon cancer patients.


Assuntos
Neoplasias do Colo , beta Catenina , Humanos , beta Catenina/metabolismo , Ligantes , Neoplasias do Colo/patologia , Via de Sinalização Wnt/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo , Receptores Acoplados a Proteínas G/genética , Quinases Semelhantes a Duplacortina
7.
Dis Model Mech ; 16(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37815464

RESUMO

Wilms tumors present as an amalgam of varying proportions of tissues located within the developing kidney, one being the nephrogenic blastema comprising multipotent nephron progenitor cells (NPCs). The recurring missense mutation Q177R in NPC transcription factors SIX1 and SIX2 is most correlated with tumors of blastemal histology and is significantly associated with relapse. Yet, the transcriptional regulatory consequences of SIX1/2-Q177R that might promote tumor progression and recurrence have not been investigated extensively. Utilizing multiple Wilms tumor transcriptomic datasets, we identified upregulation of the gene encoding non-canonical WNT ligand WNT5A in addition to other WNT pathway effectors in SIX1/2-Q177R mutant tumors. SIX1 ChIP-seq datasets from Wilms tumors revealed shared binding sites for SIX1/SIX1-Q177R within a promoter of WNT5A and at putative distal cis-regulatory elements (CREs). We demonstrate colocalization of SIX1 and WNT5A in Wilms tumor tissue and utilize in vitro assays that support SIX1 and SIX1-Q177R activation of expression from the WNT5A CREs, as well as enhanced binding affinity within the WNT5A promoter that may promote the differential expression of WNT5A and other WNT pathway effectors associated with SIX1-Q177R tumors.


Assuntos
Neoplasias Renais , Tumor de Wilms , Humanos , Via de Sinalização Wnt , Regulação Neoplásica da Expressão Gênica , Recidiva Local de Neoplasia/genética , Tumor de Wilms/genética , Tumor de Wilms/metabolismo , Tumor de Wilms/patologia , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo , Neoplasias Renais/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
8.
PLoS Biol ; 21(9): e3002308, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37733692

RESUMO

Hyperglycemia increases glucose concentrations in the cerebrospinal fluid (CSF), activating glucose-sensing mechanisms and feeding behavior in the hypothalamus. Here, we discuss how hyperglycemia temporarily modifies ependymal cell ciliary beating to increase hypothalamic glucose sensing. A high level of glucose in the rat CSF stimulates glucose transporter 2 (GLUT2)-positive subcommissural organ (SCO) cells to release SCO-spondin into the dorsal third ventricle. Genetic inactivation of mice GLUT2 decreases hyperglycemia-induced SCO-spondin secretion. In addition, SCO cells secrete Wnt5a-positive vesicles; thus, Wnt5a and SCO-spondin are found at the apex of dorsal ependymal cilia to regulate ciliary beating. Frizzled-2 and ROR2 receptors, as well as specific proteoglycans, such as glypican/testican (essential for the interaction of Wnt5a with its receptors) and Cx43 coupling, were also analyzed in ependymal cells. Finally, we propose that the SCO-spondin/Wnt5a/Frizzled-2/Cx43 axis in ependymal cells regulates ciliary beating, a cyclic and adaptive signaling mechanism to control glucose sensing.


Assuntos
Conexina 43 , Hiperglicemia , Animais , Camundongos , Ratos , Neuroglia , Glucose , Proteína Wnt-5a/genética
9.
J Hazard Mater ; 460: 132391, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37651938

RESUMO

Benzo(a)pyrene was sparsely studied for its early respiratory impairment. The non-canonical ligand WNT5A play a role in pneumonopathy, while its function during benzo(a)pyrene-induced adverse effects were largely unexplored. Individual benzo(a)pyrene, plasma WNT5A, and spirometry 24-hour change for 87 residents from Wuhan-Zhuhai cohort were determined to analyze potential role of WNT5A in benzo(a)pyrene-induced lung function alternation. Normal bronchial epithelial cell lines were employed to verify the role of WNT5A after benzo(a)pyrene treatment. RNA sequencing was adopted to screen for benzo(a)pyrene-related circulating microRNAs and differentially expressed microRNAs between benzo(a)pyrene-induced cells and controls. The most potent microRNA was selected for functional experiments and target gene validation, and their mechanistic link with WNT5A-mediated non-canonical Wnt signaling was characterized through rescue assays. We found significant associations between increased benzo(a)pyrene and reduced 24-hour changes of FEF50% and FEF75%, as well as increased WNT5A. The benzo(a)pyrene-induced inflammation and epithelial-mesenchymal transition in BEAS-2B and 16HBE cells were attenuated by WNT5A silencing. hsa-miR-122-5p was significantly and positively associated with benzo(a)pyrene and elevated after benzo(a)pyrene induction, and exerted its effect by downregulating target gene TP53. Functionally, WNT5A participates in benzo(a)pyrene-induced lung epithelial injury via non-canonical Wnt signaling modulated by hsa-miR-122-5p/TP53 axis, showing great potential as a preventive and therapeutic target.


Assuntos
Lesão Pulmonar Aguda , MicroRNAs , Humanos , Benzo(a)pireno/toxicidade , MicroRNAs/genética , Bioensaio , Brônquios , Proteína Wnt-5a/genética
10.
Cell Signal ; 111: 110858, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37633479

RESUMO

As a type of non-coding RNAs, circular RNAs (circRNAs) have the ability to bind to miRNAs and regulate gene expression. Recent studies have shown that circRNAs are involved in certain pathological events. However, the expression and functional role of circTNPO1 in osteosarcoma (OS) are not yet clear. To investigate circRNAs that are differentially expressed in OS tissues and cells, circRNA microarray analysis combined with qRT-PCR was performed. The in-vitro and in-vivo functions of circTNPO1 were studied by knocking it down or overexpressing it. The binding and regulatory relationships between circTNPO1, miR-578, and WNT5A were evaluated using dual luciferase assays, RNA pull-down and rescue assays, as well as RNA immunoprecipitation (RIP). Furthermore, functional experiments were conducted to uncover the regulatory effect of the circTNPO1/miR-578/WNT5A pathway on OS progression. Cytoplasm was identified as the primary location of circTNPO1, which exhibited higher expression in OS tissues and cells compared to the corresponding controls. The overexpression of circTNPO1 was found to enhance malignant phenotypes in vitro and increase oncogenicity in vivo. Moreover, circTNPO1 was observed to sequester miR-578 in OS cells, resulting in the upregulation of WNT5A and promoting carcinoma progression. These findings indicate that circTNPO1 can contribute to the progression of OS through the miR-578/WNT5A axis. Therefore, targeting the circTNPO1/miR-578/WNT5A axis could be a promising therapeutic strategy for OS.


Assuntos
Neoplasias Ósseas , MicroRNAs , Osteossarcoma , Humanos , RNA Circular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinogênese/genética , Osteossarcoma/patologia , Transformação Celular Neoplásica/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
11.
Diabetologia ; 66(10): 1943-1958, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37460827

RESUMO

AIMS/HYPOTHESIS: Diabetes is associated with epigenetic modifications including DNA methylation and miRNA changes. Diabetic complications in the cornea can cause persistent epithelial defects and impaired wound healing due to limbal epithelial stem cell (LESC) dysfunction. In this study, we aimed to uncover epigenetic alterations in diabetic vs non-diabetic human limbal epithelial cells (LEC) enriched in LESC and identify new diabetic markers that can be targeted for therapy to normalise corneal epithelial wound healing and stem cell expression. METHODS: Human LEC were isolated, or organ-cultured corneas were obtained, from autopsy eyes from non-diabetic (59.87±20.89 years) and diabetic (71.93±9.29 years) donors. The groups were not statistically different in age. DNA was extracted from LEC for methylation analysis using Illumina Infinium 850K MethylationEPIC BeadChip and protein was extracted for Wnt phospho array analysis. Wound healing was studied using a scratch assay in LEC or 1-heptanol wounds in organ-cultured corneas. Organ-cultured corneas and LEC were transfected with WNT5A siRNA, miR-203a mimic or miR-203a inhibitor or were treated with recombinant Wnt-5a (200 ng/ml), DNA methylation inhibitor zebularine (1-20 µmol/l) or biodegradable nanobioconjugates (NBCs) based on polymalic acid scaffold containing antisense oligonucleotide (AON) to miR-203a or a control scrambled AON (15-20 µmol/l). RESULTS: There was significant differential DNA methylation between diabetic and non-diabetic LEC. WNT5A promoter was hypermethylated in diabetic LEC accompanied with markedly decreased Wnt-5a protein. Treatment of diabetic LEC and organ-cultured corneas with exogenous Wnt-5a accelerated wound healing by 1.4-fold (p<0.05) and 37% (p<0.05), respectively, and increased LESC and diabetic marker expression. Wnt-5a treatment in diabetic LEC increased the phosphorylation of members of the Ca2+-dependent non-canonical pathway (phospholipase Cγ1 and protein kinase Cß; by 1.15-fold [p<0.05] and 1.36-fold [p<0.05], respectively). In diabetic LEC, zebularine treatment increased the levels of Wnt-5a by 1.37-fold (p<0.01)and stimulated wound healing in a dose-dependent manner with a 1.6-fold (p<0.01) increase by 24 h. Moreover, zebularine also improved wound healing by 30% (p<0.01) in diabetic organ-cultured corneas and increased LESC and diabetic marker expression. Transfection of these cells with WNT5A siRNA abrogated wound healing stimulation by zebularine, suggesting that its effect was primarily due to inhibition of WNT5A hypermethylation. Treatment of diabetic LEC and organ-cultured corneas with NBC enhanced wound healing by 1.4-fold (p<0.01) and 23.3% (p<0.05), respectively, with increased expression of LESC and diabetic markers. CONCLUSIONS/INTERPRETATION: We provide the first account of epigenetic changes in diabetic corneas including dual inhibition of WNT5A by DNA methylation and miRNA action. Overall, Wnt-5a is a new corneal epithelial wound healing stimulator that can be targeted to improve wound healing and stem cells in the diabetic cornea. DATA AVAILABILITY: The DNA methylation dataset is available from the public GEO repository under accession no. GSE229328 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE229328 ).


Assuntos
Diabetes Mellitus , MicroRNAs , Humanos , Repressão Epigenética , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco/metabolismo , RNA Interferente Pequeno/metabolismo , Cicatrização/genética , Células Epiteliais/metabolismo
12.
Mutat Res Rev Mutat Res ; 792: 108465, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37495091

RESUMO

The Wnt signaling pathway is known to play a crucial role in cancer, and WNT5A is a member of this pathway that binds to the Frizzled (FZD) and Receptor Tyrosine Kinase-Like Orphan Receptor (ROR) family members to activate non-canonical Wnt signaling pathways. The WNT5A pathway is involved in various cellular processes, such as proliferation, differentiation, migration, adhesion, and polarization. In the case of colorectal cancer (CRC), abnormal activation or inhibition of WNT5A signaling can lead to both oncogenic and antitumor effects. Moreover, WNT5A is associated with inflammation, metastasis, and altered metabolism in cancer cells. This article aims to discuss the molecular mechanisms and dual roles of WNT5A in CRC.


Assuntos
Neoplasias Colorretais , Proteínas Wnt , Humanos , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Via de Sinalização Wnt/genética , Neoplasias Colorretais/genética , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
13.
Cell Death Dis ; 14(5): 322, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173306

RESUMO

Protein arginine methyltransferase 2 (PRMT2) is involved in several biological processes via histone methylation and transcriptional regulation. Although PRMT2 has been reported to affect breast cancer and glioblastoma progression, its role in renal cell cancer (RCC) remains unclear. Here, we found that PRMT2 was upregulated in primary RCC and RCC cell lines. We demonstrated that PRMT2 overexpression promoted RCC cell proliferation and motility both in vitro and in vivo. Moreover, we revealed that PRMT2-mediated H3R8 asymmetric dimethylation (H3R8me2a) was enriched in the WNT5A promoter region and enhanced WNT5A transcriptional expression, leading to activation of Wnt signaling and malignant progression of RCC. Finally, we confirmed that high PRMT2 and WNT5A expression was strongly correlated with poor clinicopathological characteristics and poor overall survival in RCC patient tissues. Our findings indicate that PRMT2 and WNT5A may be promising predictive diagnostic biomarkers for RCC metastasis. Our study also suggests that PRMT2 is a novel therapeutic target in patients with RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Peptídeos e Proteínas de Sinalização Intracelular , Carcinogênese/genética , Transformação Celular Neoplásica , Neoplasias Renais/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteína Wnt-5a/genética , Proteína-Arginina N-Metiltransferases/genética
14.
FASEB J ; 37(6): e22959, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37191968

RESUMO

Myocardial ischemia/reperfusion (MI/R) injury contributes to severe injury for cardiomyocytes. In this study, we aimed to explore the underlying mechanism of TFAP2C on cell autophagy in MI/R injury. MTT assay measured cell viability. The cells injury was evaluated by commercial kits. IF detected the level of LC3B. Dual luciferase reporter gene assay, ChIP or RIP assay were performed to verify the interactions between crucial molecules. We found that TFAP2C and SFRP5 expression were decreased while miR-23a-5p and Wnt5a increased in AC16 cells in response to H/R condition. H/R induction led to cell injury and induced autophagy, which were reversed by TFAP2C overexpression or 3-MA treatment (an autophagy inhibitor). Mechanistically, TFAP2C suppressed miR-23a expression through binding to miR-23a promoter, and SFRP5 was a target gene of miR-23a-5p. Moreover, miR-23a-5p overexpression or rapamycin reversed the protective impacts of TFAP2C overexpression on cells injury and autophagy upon H/R condition. In conclusion, TFAP2C inhibited autophagy to improve H/R-induced cells injury by mediating miR-23a-5p/SFRP5/Wnt5a axis.


Assuntos
MicroRNAs , Traumatismo por Reperfusão Miocárdica , Humanos , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Autofagia/genética , Apoptose , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fator de Transcrição AP-2/genética , Fator de Transcrição AP-2/metabolismo
15.
Pharm Pat Anal ; 12(2): 69-77, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37078761

RESUMO

Aberrant expression of the WNT signaling pathway has been associated with cancer progression and recurrence. Research over the decades has led to development of WNT-targetable small molecules, but has faced challenges in translating to clinics. Unlike WNT/ß-catenin inhibitors, WNT5A-mimicking peptide, Foxy5 has shown encouraging efficacy in impairing metastasis of cancers with low or absent WNT5A expression. Recent patent application US20210008149 advocates the implication of Foxy5 for treatment and prevention of cancer relapse. The inventors have demonstrated the anti-stemness activity of Foxy5 in mice xenograft model via suppressing the expression of colonic cancer stem cell markers. Foxy5 also exhibits non-toxic nature when administered alone or in synergy with standard chemotherapy thus strengthening its candidature in the field of cancer therapeutics.


Assuntos
Recidiva Local de Neoplasia , Via de Sinalização Wnt , Animais , Humanos , Camundongos , Peptídeos , Proteína Wnt-5a/genética
16.
Biochem Biophys Res Commun ; 655: 50-58, 2023 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-36933307

RESUMO

Serious intestinal side-effects that target the NOTCH-HES1 pathway in human cancer differentiation therapy make it necessary to understand the pathway at the human organ level. Herein, we endogenously introduced HES1-/- mutations into human embryonic stem cells (hESCs) and differentiated them into human intestinal organoids (HIO). The HES1-/- hESCs retained ES cell properties and showed gene expression patterns similar to those of wild-type hESCs when they differentiated into definitive endoderm and hindgut. During the formation of the HES1-/- lumen we noted an impaired development of mesenchymal cells in addition to the increased differentiation of secretory epithelium. RNA-Seq revealed that inhibited development of the mesenchymal cells may have been due to a downregulation of WNT5A signaling. Overexpression of HES1 and silencing of WNT5A in the intestinal fibroblast cell line CCD-18Co indicated that HES1 was involved in the activation of WNT5A-induced fibroblast growth and migration, suggesting the likelihood of the Notch pathway in epithelial-mesenchymal crosstalk. Our results facilitated the identification of more precise underlying molecular mechanisms displaying distinct roles in HES1 signaling in stromal and epithelial development in human intestinal mucosa.


Assuntos
Mucosa Intestinal , Intestinos , Humanos , Diferenciação Celular/genética , Mucosa Intestinal/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco Embrionárias , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
18.
Pediatr Neonatol ; 64(5): 528-537, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36922327

RESUMO

OBJECTIVE: Intraventricular hemorrhage (IVH) causes morbidity and mortality in preterm infants and prenatal exposure to inflammation contributes to brain injury. Moreover, prenatal exposure to severe inflammation increases the risk of IVH in preterm neonates. The current study investigated whether intrauterine exposure to inflammation affects cerebral angiogenesis and its underlying mechanisms. METHODS: Wnt5a, flt1, and vascular endothelial growth factor (VEGF)-A levels in cord blood serum (stored in a bio-bank) of the enrolled patients were measured via enzyme-linked immunosorbent assay. A preterm prenatal inflammation exposure model was established in rats by intraperitoneal injection intraperitoneally during pregnancy. Angiogenesis of cerebral tissue was analyzed using immunohistochemistry. Wnt5a, flt1, and VEGF-A expression levels were measured via immunohistochemistry, immunofluorescence, or western blotting. The correlation between Wnt5a and flt1 expression and the cerebral vessel area was also analyzed. RESULTS: The Wnt5a and flt1 levels in the cord blood serum were significantly higher in the amnionitis group than in the non-amnionitis group. The VEGF-A level in the cord blood serum was significantly lower in the amnionitis group. In the rat model, preterm rats in the prenatal inflammation group exhibited increased microglial cell infiltration and decreased vessel area and diameter in the cerebral tissue compared to the control group. Wnt5a was located in microglial cells, and Wnt5a and flt1 expression in brain tissue significantly increased after prenatal lipopolysaccharide (LPS) exposure. VEGF-A expression declined after prenatal LPS exposure. The cerebral vessel area was negatively correlated with Wnt5a and flt1 expression. CONCLUSION: Disordered cerebral angiogenesis is associated with increased Wnt5a-Flt1 activation in microglial cells after exposure to intrauterine inflammation.


Assuntos
Hemorragia Cerebral , Corioamnionite , Inflamação , Efeitos Tardios da Exposição Pré-Natal , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Proteína Wnt-5a , Animais , Feminino , Humanos , Gravidez , Ratos , Hemorragia Cerebral/genética , Hemorragia Cerebral/metabolismo , Corioamnionite/genética , Corioamnionite/metabolismo , Inflamação/complicações , Inflamação/genética , Inflamação/metabolismo , Lipopolissacarídeos , Fator A de Crescimento do Endotélio Vascular , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
19.
Curr Top Dev Biol ; 153: 195-227, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36967195

RESUMO

Deciphering non-canonical WNT signaling has proven to be both fascinating and challenging. Discovered almost 30 years ago, non-canonical WNT ligands signal independently of the transcriptional co-activator ß-catenin to regulate a wide range of morphogenetic processes during development. The molecular and cellular mechanisms that underlie non-canonical WNT function, however, remain nebulous. Recent results from various model systems have converged to define a core non-canonical WNT pathway consisting of the prototypic non-canonical WNT ligand, WNT5A, the receptor tyrosine kinase ROR, the seven transmembrane receptor Frizzled and the cytoplasmic scaffold protein Dishevelled. Importantly, mutations in each of these signaling components cause Robinow syndrome, a congenital disorder characterized by profound tissue morphogenetic abnormalities. Moreover, dysregulation of the pathway has also been linked to cancer metastasis. As new knowledge concerning the WNT5A-ROR pathway continues to grow, modeling these mutations will likely provide crucial insights into both the physiological regulation of the pathway and the etiology of WNT5A-ROR-driven diseases.


Assuntos
Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Proteínas Wnt , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo , Transdução de Sinais/fisiologia , Morfogênese , Via de Sinalização Wnt
20.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(1): 15-20, 2023 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-36631010

RESUMO

Objective To investigate the effect of PDS5B on the biological function of A549 human lung cancer cells and possible molecular mechanism. Methods The proliferation of lung cancer cells was detected by MTT assay and colony formation assay after silencing or overexpressing PDS5B of A549 cells. The cell migration was detected by scratch assay and TranswellTM assay. The protein expression of PDS5B and Wnt5a in A549 cells was detected by Western blot analysis. Cell migration was detected by TranswellTM after PDS5B small interference RNA(siRNA) and Wnt5a siRNA were co-transfected. Results Compared with the negative control group, the protein expression of PDS5B decreased significantly after transfected with PDS5B siRNA. The proliferation ability , colony formation rate and migration ability of A549 cells significantly improved, and the expression of Wnt5a was increased. The opposite results were observed after PDS5B over-expression. The co-transfer experiment showed that Wnt5a could resist the inhibition of A549 cells by PDS5B. Conclusion PDS5B inhibits lung cancer cell proliferation by down-regulating Wnt5a expression.


Assuntos
Proliferação de Células , Proteínas de Ligação a DNA , Neoplasias Pulmonares , Fatores de Transcrição , Proteína Wnt-5a , Humanos , Células A549 , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/metabolismo , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...